Pages

Tuesday, 9 December 2014

Interfacing Matlab With Embedded Systems









MATLAB INTRODUCTION:

Matlab is a program for doing numerical computation. It was originally designed for solving linear algebra type problems using matrices. Its name is derived from MATrix LABoratory.Matlab is also a programming language that currently is widely used as a platform for developing tools for Machine Learning.

Why it is useful for prototyping AI projects??

·         Large toolbox of numeric/image library functions.
·         Very useful for displaying, visualizing data.
·         High-level: focus on algorithm structure, not on low-level Details.
·         Allows quick prototype development of algorithms.

·         Some other aspects of Matlab
·         Mat lab is an interpreter -> not as fast as compiled code.
·         Typically quite fast for an interpreted language.
·         Often used early in development -> can then convert to C (e.g.,) for speed.
·         Can be linked to C/C++, JAVA, SQL, etc.
·         Many algorithms and toolboxes freely available.

Getting help
To view the online documentation, select MATLAB help from Help menu or MATLAB help directly in the Command Window. The preferred method is to use the Help Browser. The Help Browser can be started by selecting the? Icon from the desktop toolbar. On the other hand, information about any command is available by typing
>> help Command
 Variables:
 No need for types. i.e.,
 

   All variables are created with double precision unless specified and all variables are treated as matrices.







   After these statements, the variables are 1x1 matrices with double precision.

Using MATLAB as a calculator:

As an example of a simple interactive calculation, just type the expression you want to evaluate. Let's start at the very beginning. For example, let's suppose you want to calculate the expression, 1 + 2 * 3. You type it at the prompt command (>>) as follows,
>> 1+2*3
an =
7
                                                               
You will have noticed that if you do not specify an output variable, MATLAB uses a default variable an, short for answer, to store the results of the current calculation. Note that the variable an is
created (or overwritten, if it is already existed). To avoid this, you may assign a value to a variable or output argument name. For example,
>> x = 1+2*3
x =
7                                                                                                   
Will result in x being given the value 1 + 2 * 3 = 7. This variable name can always be used to refer to the results of the previous computations. Therefore, computing 4x will result in
>> 4*x
 an =
28.0000
Functions in
Symbol
Operation
Example
+
Addition
2+3
-
Subtraction
2-3
*
Multiplication
2*3
/
Division
2/3


Matlab:
Some of the functions in Matlab are inbuilt and some are user defined.
Ex:
X = ones (3, 3); 
1          1          1
1          1          1
1          1          1
For more details regarding functions use help option in command window.
Ex: >>help ones
 Matlab Matrices:
Matlab treats all variables as matrices. For our purposes a matrix can be thought of as an array, in fact, that is how it is stored. Vectors are special forms of matrices and contain only one row OR one column.
Ex: row vector = [1 27 74];
x = [1, 2, 5];
Note: To separate two elements one can use space or comma. Scalars are matrices with only one row AND one column.
Ex: Colvector = [5; 45; 89]
A matrix can be created in Matlab as follows:
>>matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9];
matrix = 1  2    3
               4  5  6
                      5  8   9

Extracting a Sub-Matrix
A portion of a matrix can be extracted and stored in a smaller matrix by specifying the names of both matrices and the rows and columns to extract. The syntax is
sub_matrix = matrix (r1: r2, c1: c2) ;

Where r1 and r2 specify the beginning and ending rows and c1 and c2 specify the beginning and ending columns to be extracted to make the new matrix
Plotting examples:
1)                                                              
>> x = [1 2 3 4 5 6];
>> y = [3 -1 2 4 5 1];
>> plot(x,y)

Output:

Save, Load, Delete Workspace Variables:        
The workspace is not maintained across sessions of MATLAB. When you quit MATLAB, the workspace clears. However, you can save any or all of the variables in the current workspace to a MAT-file (.mat). You can load MAT-files at a later time during the current MATLAB session, or during another session, if you want to reuse the workspace variables.
 Syntax for save
save myfile VAR1 VAR2
                 or
save(‘myfile’,’VAR1’,’var2’)

Syntax for Load
load filename
load ('filename')
load filename.ext
load filename –ascii
load filename –mat

Plotting with Matlab
Matlab has a lot of function for plotting data. The basic one will plot one vector vs. another. The first one will be treated as the abscissa (or x) vector and the second as
the ordinate (or y) vector. The vectors have to be the same length.
>> plot (time, dist) % plotting versus time
Matlab will also plot a vector vs. its own index. The index will be treated as the abscissa vector. Given a vector “time” and a vector “dist” we could say: >> plot (dist) % plotting versus index

Output: is from a good serial program.
In some cases, writing a good serial code may be sufficient for your short-term needs.In general, pre-allocation of arrays (rather than growing them dynamically) is also an important part of writing efficient Matlab code.
 The serial port session comprises all the steps you are likely to take when communicating with a device connected to a serial port. These steps are: Create a serial port object — Create a serial port object for a specific serial port using the serial creation function. Configure properties during object creation if necessary.
2) Plotting a sine wave:
>> x = 0:pi/100:2*pi;
>> y = sin(x);
>> plot(x,y) 



Running a script:
Home —> New
Will open a new page in the editor.
Type the program in the editor and run the script
Note : whatever written after % is taken as comment

Hello World program in MATLAB:
clc
close all
clear all
  fprintf ( 1, '\n' ); % print First line blank
  fprintf ( 1, 'HELLO:\n' ); % print Hello in second line
  fprintf ( 1, '  MATLAB version\n' ); % print version
  fprintf ( 1, '  This is how to say:\n' );
  fprintf ( 1, '\n' ); % print blank line
  fprintf ( 1, '  Hello, world!\n' ); % print Hello, world



Output of the above Program


How to use conditions

IF condition: if expression condition sentences else if expr. Condition sentences else sentences end.
Simple example:
a = input(‘valor1? ‘);

Hello World program in MATLAB:
clc
close all
clear all
  fprintf ( 1, '\n' ); % print First line blank
  fprintf ( 1, 'HELLO:\n' ); % print Hello in second line
  fprintf ( 1, '  MATLAB version\n' ); % print version
  fprintf ( 1, '  This is how to say:\n' );
  fprintf ( 1, '\n' ); % print blank line
  fprintf ( 1, '  Hello, world!\n' ); % print Hello, world
b = input(‘valor2? ‘);
if a == b,
fprintf(‘a is equal to b\n’);
elseif a > 0 && b > 0
fprintf(‘both positive\n’);
else
fprintf(‘other case\n’);
end


FOR loop: For loops are often used when a sequences of operations is to be performed a predetermined number of times. For example computing average of list of numbers requires adding up a known number of values.

Syntax:
            for variable=expr sentence;
                                         …….
                                  Sentence;
                                      End

M=rand(4,4);
Ramu=0;
for i=1:4;
for j=1:4;
Ramu=Ramu+M (I,j);
end
end
fprintf(‘sum=%d\n’,Ramu);

While loop:
While loops will execute code as long as the condition part of the loop is true.  Once false, the loop will stop.  If the value is never true, the loop will never run.  Vice versa, be careful if the condition is always true, as you will entire into an infinite loop. 


The Matlab syntax is:
while (condition)
  [perform code]
End
clc                             % clear command window screen
close all             % close all other window except command window
clear all                  % Clear  workspace
x=1;                     %initial x value
While (x<=15)       % number loops     
Disp(x)                   %display x as many times
x=x+2;                  % incrementing x by 2
end                         % end of program     

 Serial/Parallel communication:

Properties during object creation if necessary. Connect to the device — Connect the serial port object to the device using the fopen function. After the object is connected, alter the necessary device settings by configuring property values, read data, and write data. Configure properties — To establish the desired serial port object behavior, assign values to properties using the set function or dot notation. Write and read data — Write data to the device using the fprintf or fwrite function, and read data from the device using the fgetl, fgets, fread, fscanf, or readasync function. Disconnect and clean up — When you no longer need the serial port object, disconnect it from the device.

Color Detection via camera to Hardware:

 In the below given program camera which is connected to the PC will be accessed and RED color will be detected. This color information will be sent to the hardware using a function senddata. Which is a user defined one.



Serial Communication Program:
Serial Communication:
Create serial port object :
Example program for serial communication:
 disp('BEGIN') % displays BEGIN
ser=serial('COM4'); % Select the COM port
set (ser,'BaudRate',9600); % set baudrate
set(ser,'DataBits',8); % Set databits
set(ser,'Parity','none'); % set parity
set(ser,'StopBits',1); % set stop bits
set(ser,'FlowControl','none');% set flow control
set(ser,'Terminator','CR/LF'); % set Terminator
fopen(ser); % open serial port
fprintf(ser,'%d',aa); % data what to send via serial port
fclose(ser); % close serial port
delete(ser); % delete serial port
disp('STOP'); % display ‘STOP’

E-Mail Send Program:

Sending E-mail via MATLAB:
Sending mail through MATLAB without the help of a browser. Below given is the program for sending the mail through Gmail.
 myaddress = 'me@gmail.com'; %From address sender mail ID
mypassword = 'password'; % Sender password
toaddress = 'to@gmail.com'; % Receiver mail ID
setpref('Internet','E_mail',myaddress); % set preference
setpref('Internet','SMTP_Server','smtp.gmail.com');
setpref('Internet','SMTP_Username',myaddress);
setpref('Internet','SMTP_Password',mypassword);
 props = java.lang.System.getProperties;
props.setProperty('mail.smtp.auth','true');
props.setProperty('mail.smtp.socketFactory.class', ...
                  'javax.net.ssl.SSLSocketFactory');
props.setProperty('mail.smtp.socketFactory.port','465');
sendmail(toaddress, 'subject’, ‘Message’); % function to send mail

Graphical User Interface (GUI):

A graphical user interface (GUI) is a graphical display in one or more windows containing controls, called components, which enable a user to perform interactive tasks. The user of the GUI does not have to create a script or type commands at the command line to accomplish the tasks. Unlike coding programs to accomplish tasks, the user of a GUI need not understand the details of how the tasks are performed. GUI components can include menus, toolbars, push buttons, radio buttons, list, boxes, and sliders—just to name a few. GUIs created using MATLAB tools can also perform any type of computation, read and write data files, communicate with other GUIs, and display data as tables or as plots.
Home—> New —> GUI





Home —> New —> Graphical User Interface


Construction of simple GUI
· Click on the push button to place a pushbutton in the GUI.
· Double Click on the push button for further editing (Change color, name, font etc.,).
· Similarly axes for axes.

How to make edits for push button?


After altering font, color and name save the file and run it.
· Program is given at the end for the simple GUI.  
·  Below given is the simple GU  program output

Simulink:

Introduction to Simulink:
Simulink is a software package for modeling, simulating, and analyzing dynamical systems. It supports linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of the two. Systems can also be multi-rate, i.e., have different parts that are sampled or updated at different rates.For modeling, Simulink provides a graphical user interface (GUI) for building models as block diagrams, using click-and-drag mouse operations. With this interface, you can draw the models just as you would with pencil and paper (or as most textbooks depict them). 

Simulink includes a comprehensive block library of sinks, sources, linear and nonlinear components, and connectors. You can also customize and create your own blocks. 


Simulink Library Browser:
·  Components required for building a circuit.
·  Drag and drop the components from the browser window.
·  Below is a small example of how to use block in Simulink for a simple circuit construction.










Now drag the Sine Wave block from the Sources window to your model window .Copy the rest of the blocks in a similar manner from their respective libraries into the model window. You can move a block from one place in the model window to another by dragging the block. You can move a block a short distance by selecting the block, then pressing the arrow keys. With all the blocks copied into the model window, the model should look something like this.




Fig: Taking individual components from library



Hold down the mouse button and move the cursor to the top input port of the Mux block.
Notice that the line is dashed while the mouse button is down and that the cursor shape changes to double-lined cross hairs as it approaches the Mux block. Drawing a branch line is slightly different from drawing the line you just drew. To weld a connection to an existing line.Finish making block connections. When you're done, your model should look something like this.




Now, open the Scope block to view the simulation output. Keeping the Scope window open, set up Simulink to run the simulation for 10 seconds. First, set the simulation parameters by choosing Simulation Parameters from the Simulation menu. On the dialog box that appears, notice that the Stop time is set to 10.0 (its default value).



The simulation stops when it reaches the stop time specified in the Simulation Parameters dialog box or when you choose stop from the Simulation menu. To save this model, choose Save from the File menu and enter a filename and location. That file contains the description of the model.

Arduino with Simulink:

 Steps to install Arduino package in Matlab:

1. Home —>Add-on    —>Get Hardware support Packages
.

2. Choose the option as internet to download the package.

3. Tick the check box of which you want to download. Click on next for option.

4. Log into your Matlab account for downloading the package.

5. After login you can find the window as shown.

6.Next an install   option will come click install to install the software



7. Give finish after you download the entire package.



8.Click on examples to get this window



9.Now let’s see from scratch how to build Simulink model, just click Simulink library then you will be appearing with many libraries there we can see our Simulink arduino package library.



10. In the left there will be option to open new model, open a new model

11.In this example we are going to use digital output block ,just drag and drop on new model, just double click on this block you will appearing with in which pin number you are going to show output, give it as 9 click ok.

12. Go to sources library drag and drop pulse generated block, double click on that give sample time 0.1 and click ok, because it is going to generate the pulse every one second. We can see that by using scope which is available in sinks library.

13. Later connect the pulse generator and digital output.
14.Now we shall move on to code generation, save the model as tutorial1.


15.Click on tools and select run on target hardware and prepare to run, it opens configuration parameters dialog there we have to select arduino uno as target hardware and leave rest of parameters as default and click ok.





16. Now we have to download the code to hardware, just go to tools and select run on target hardware and run.

17. In the bottom bar of model it is going to show status of download

18.After the download finishes, at that time LED has to blink for every second.







Arduino Atmega 320 Hardware




                                     Hardware setup: Arduino Uno connected to LED via resistor


Raspberry Pi with Simulink:

Software requirements:

MATLAB and Simulink 2013a or higher

Hardware:- Raspberry Pi -RGB Camera-Ethernet cable -Micro USB cable

When connected to MATLAB and Simulink products, Raspberry Pi also can help students understand concepts and workflows for designing an embedded system, without using hand programming. In this example the camera captures the image which will be connected to Raspberry pi and that image will be inverted and that output is shown in Matlab window.



Example for camera inversion using Raspberry pi

The Raspberry Pi is manufactured in three board configurations through licensed manufacturing deals with Newark element14 (Premier Farnell), RS Components and Egoman. These companies sell the Raspberry Pi online. Egoman produces a version for distribution solely in China and Taiwan, which can be distinguished from other Pis by their red coloring and lack of FCC/CE marks. The hardware is the same across all manufacturers. 


Getting Started :
· Automated installation and configuration

· Library of Simulink blocks that connect to Raspberry Pi I/O, such as audio input and output, video input and display, UDP send and receive, and GPIO read and write.

· Interactive parameter tuning and signal monitoring of applications running on Raspberry Pi
Model deployment for standalone operation.

After construction of the above Simulink model and Hardware arrangement.
Tools—>Run on Target Hardware    —>Options
Set the IP address and select the particular hardware.



Modeling with Raspberry Pi
In command window give ping with above mentioned IP to ping the Hardware with software.
>>ping 169.254.0.31
When sent and received packets are same and if the loss is 0% it means Pi is connected perfectly connected.

Output Window Raspberry Pi
Keep the mode as external as we are connecting an external device.

After running the program the camera screen will open the output of camera will inverted as shown in the figure.Now the full operation of inversion is happening on Raspberry pi and SDL display displays the video on the monitor





Beagle bone Black
Interfacing with Simulink:





Creating a model:
·  Home —> Simulink

·  Click on Simulink icon then the library window appears.

·  Simulink —>Sources from Simulink library—>Sine Wave block to the model.

·  Connect the output of sine

·  wave block to Slider Gain block

·  Slider gain block —>Scope

·  Save model

Setting the parameters



Set Sine wave parameter as shown above
 Configuration parameters:
·  Connect BeagleBord hardware with Ethernet network.

·  Click on tools from Simulink window—>Run on Target Hardware à—>prepare to run

·  Set the IP address as shown below

·  Keep the default values as it is.

·  Press ok to continue.





Run the model:
· Press the run button so that the model will run.
· Open scope to see the result.
· If you want to alter the parameters press stop and then alter.


Output

Making an executable file

1.Type deploy tool in Matlab command window.


2. Windows standalone Application window


3. After adding all main file and other related files press build icon.

4. After finishing the building process click on package to view the complete package.

5. Click on add MCR option form the package window which appear at the right corner.


6. After pressing ok, click on the package icon present on the upper right corner.

7. After pressing ok, click on the package icon present on the upper right corner.

8. Give a path for this one so that the package will be placed in specific folder in the form of executable file.

9.This will install the Matlab package hit on next to complete the process. To run as executa-ble

file

HTML View of Script:


To create html view of the code, consider any Matlab file and add it to your current folder.


Use publish command to generate a html view.


Publish(‘filename.m’);


This executes the code for each cell in filename.m and save the file to /html/filename.html.

Web (‘html/filename.html’)



USB 8 relay control in Matlab


                                                       Brand: RDL

                                                       Order Code: RDL/8RB/14/001/V2.0
                                        Product Datasheet: 8-Relay Board Datasheet




Sample programme

function varargout = relay_export(varargin)
% RELAY_EXPORT MATLAB code for relay_export.fig

%      RELAY_EXPORT, by itself, creates a new RELAY_EXPORT or raises the existing
%      singleton*.
%
%      H = RELAY_EXPORT returns the handle to a new RELAY_EXPORT or the handle to
%      the existing singleton*.
%
%      RELAY_EXPORT('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in RELAY_EXPORT.M with the given input arguments.
%
%      RELAY_EXPORT('Property','Value',...) creates a new RELAY_EXPORT or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before relay_export_OpeningFcn gets called. An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to relay_export_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help relay_export

% Last Modified by GUIDE v2.5 27-Nov-2014 12:28:01
 % Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @relay_export_OpeningFcn, ...
                   'gui_OutputFcn',  @relay_export_OutputFcn, ...
                   'gui_LayoutFcn',  @relay_export_LayoutFcn, ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end
 if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});

end
% End initialization code - DO NOT EDIT
% --- Executes just before relay_export is made visible.
function relay_export_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to relay_export (see VARARGIN)
 % Choose default command line output for relay_export
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes relay_export wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = relay_export_OutputFcn(hObject, eventdata, handles)
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
!ft245RL_Init.exe
 global bin1
 bin1 = 0;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 global bin1
global flag4
if flag4 == 0
  set(handles.pushbutton1, 'BackgroundColor','red')
   set(handles.pushbutton1, 'String','Turn ON Relay 1')
 bin1=bitor(bin1,1);
senddata(bin1)
    flag4=1;
else
  set(handles.pushbutton1, 'BackgroundColor','green')
   set(handles.pushbutton1, 'String','Turn OFF Relay 1')
 bin1=bitand(bin1,254);
senddata(bin1)
    flag4=0;
end
%set(handles.pushbutton1, 'BackgroundColor','red')
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 global bin1
global flag4
if flag4 =0
   set(handles.pushbutton2, 'BackgroundColor','red')
    set(handles.pushbutton2, 'String','Turn ON Relay 2')
bin1=bitor(bin1,2);
senddata(bin1)
 flag4=1;
else
 bin1=bitand(bin1,253);
senddata(bin1)
  set(handles.pushbutton2, 'BackgroundColor','green')
     set(handles.pushbutton2, 'String','Turn OFF Relay 2')
    flag4=0;
end
 % --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global bin1
global flag4
if flag4 == 0
   set(handles.pushbutton3, 'BackgroundColor','red')
    set(handles.pushbutton3, 'String','Turn ON Relay 3')
    bin1=bitor(bin1,4);
senddata(bin1)
    flag4=1;
    else
    set(handles.pushbutton3, 'BackgroundColor','green')
    set(handles.pushbutton3, 'String','Turn OFF Relay 3')
    bin1=bitand(bin1,251);
senddata(bin1)
flag4=0;
end
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 global bin1
global flag4
if flag4 == 0
 set(handles.pushbutton4, 'BackgroundColor','red')
 set(handles.pushbutton4, 'String','Turn ON Relay 4')
 bin1=bitor(bin1,8);
senddata(bin1)
  flag4=1;
    else
    set(handles.pushbutton4, 'BackgroundColor','green')
    set(handles.pushbutton4, 'String','Turn OFF Relay 4')
 bin1=bitand(bin1,247);
senddata(bin1)
   flag4=0;
end
 % --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 global bin1
global flag4
if flag4 == 0
    set(handles.pushbutton5, 'BackgroundColor','red')
    set(handles.pushbutton5, 'String','Turn ON Relay 4')
bin1=bitor(bin1,16);
senddata(bin1)
    flag4=1;
    else
    set(handles.pushbutton5, 'BackgroundColor','green')
    set(handles.pushbutton5, 'String','Turn OFF Relay 5')
    bin1=bitand(bin1,239);
senddata(bin1)
flag4=0;
end
 % --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global bin1
global flag4
if flag4 == 0
     set(handles.pushbutton6, 'BackgroundColor','red')
    set(handles.pushbutton6, 'String','Turn ON Relay 6')
   bin1=bitor(bin1,32);
senddata(bin1)
    flag4=1;
    else
    set(handles.pushbutton6, 'BackgroundColor','green')
    set(handles.pushbutton6, 'String','Turn OFF Relay 6')
   bin1=bitand(bin1,223);
senddata(bin1)
 flag4=0;
end
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton7 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global bin1
global flag4
if flag4 == 0
    set(handles.pushbutton7, 'BackgroundColor','red')
    set(handles.pushbutton7, 'String','Turn ON Relay 7')
    bin1=bitor(bin1,64);
senddata(bin1)
    flag4=1;
    else
    set(handles.pushbutton7, 'BackgroundColor','green')
    set(handles.pushbutton7, 'String','Turn OFF Relay 7')
   bin1=bitand(bin1,191);
senddata(bin1)
 flag4=0;
end
 % --- Executes on button press in pushbutton8.
function pushbutton8_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton8 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global bin1
global flag4
if flag4 == 0
    set(handles.pushbutton8, 'BackgroundColor','red')
    set(handles.pushbutton8, 'String','Turn ON Relay 8')
  bin1=bitor(bin1,128);
senddata(bin1)
    flag4=1;
    else
    set(handles.pushbutton8, 'BackgroundColor','green')
    set(handles.pushbutton8, 'String','Turn OFF Relay 8')
    bin1=bitand(bin1,127);
senddata(bin1)
flag4=0;
end
 % --- Creates and returns a handle to the GUI figure.
function h1 = relay_export_LayoutFcn(policy)
% policy - create a new figure or use a singleton. 'new' or 'reuse'.
persistent hsingleton;
if strcmpi(policy, 'reuse') & ishandle(hsingleton)
    h1 = hsingleton;
    return;
end
load relay_export.mat
 appdata = [];
appdata.GUIDEOptions = mat{1};
appdata.lastValidTag = 'figure1';
appdata.GUIDELayoutEditor = [];
appdata.initTags = struct(...
    'handle', [], ...
    'tag', 'figure1');
 h1 = figure(...
'Units','characters',...
'Color',[0 0 0],...
'Colormap',[0 0 0.5625;0 0 0.625;0 0 0.6875;0 0 0.75;0 0 0.8125;0 0 0.875;0 0 0.9375;0 0 1;0 0.0625 1;0 0.125 1;0 0.1875 1;0 0.25 1;0 0.3125 1;0 0.375 1;0 0.4375 1;0 0.5 1;0 0.5625 1;0 0.625 1;0 0.6875 1;0 0.75 1;0 0.8125 1;0 0.875 1;0 0.9375 1;0 1 1;0.0625 1 1;0.125 1 0.9375;0.1875 1 0.875;0.25 1 0.8125;0.3125 1 0.75;0.375 1 0.6875;0.4375 1 0.625;0.5 1 0.5625;0.5625 1 0.5;0.625 1 0.4375;0.6875 1 0.375;0.75 1 0.3125;0.8125 1 0.25;0.875 1 0.1875;0.9375 1 0.125;1 1 0.0625;1 1 0;1 0.9375 0;1 0.875 0;1 0.8125 0;1 0.75 0;1 0.6875 0;1 0.625 0;1 0.5625 0;1 0.5 0;1 0.4375 0;1 0.375 0;1 0.3125 0;1 0.25 0;1 0.1875 0;1 0.125 0;1 0.0625 0;1 0 0;0.9375 0 0;0.875 0 0;0.8125 0 0;0.75 0 0;0.6875 0 0;0.625 0 0;0.5625 0 0],...
'IntegerHandle','off',...
'InvertHardcopy',get(0,'defaultfigureInvertHardcopy'),...
'MenuBar','none',...
'Name','relay',...
'NumberTitle','off',...
'PaperPosition',get(0,'defaultfigurePaperPosition'),...
'Position',[103.8 42.1538461538462 110.2 19.3076923076923],...
'Resize','off',...
'HandleVisibility','callback',...
'UserData',[],...
'Tag','figure1',...
'Visible','on',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'pushbutton1';
 h2 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 1 0],...
'Callback',@(hObject,eventdata)relay_export('pushbutton1_Callback',hObject,eventdata,guidata(hObject)),...
'Position',[5.6 11.7692307692308 20.2 3.84615384615385],...
'String','Turn OFF Relay1',...
'Tag','pushbutton1',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'pushbutton2';
 h3 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 1 0],...
'Callback',@(hObject,eventdata)relay_export('pushbutton2_Callback',hObject,eventdata,guidata(hObject)),...
'Position',[29.8 11.6923076923077 18 3.92307692307692],...
'String','Turn OFF Relay 2',...
'Tag','pushbutton2',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'pushbutton3';
 h4 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 1 0],...
'Callback',@(hObject,eventdata)relay_export('pushbutton3_Callback',hObject,eventdata,guidata(hObject)),...
'Position',[54.4 11.7692307692308 18 3.84615384615385],...
'String','Turn OFF Relay 3',...
'Tag','pushbutton3',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'pushbutton4';
 h5 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 1 0],...
'Callback',@(hObject,eventdata)relay_export('pushbutton4_Callback',hObject,eventdata,guidata(hObject)),...
'Position',[79.8 11.7692307692308 17.6 3.84615384615385],...
'String','Turn OFF Relay 4',...
'Tag','pushbutton4',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'pushbutton5';
 h6 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 1 0],...
'Callback',@(hObject,eventdata)relay_export('pushbutton5_Callback',hObject,eventdata,guidata(hObject)),...
'Position',[5.2 4 19.6 3.84615384615385],...
'String','Turn OFF Relay 5',...
'Tag','pushbutton5',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'pushbutton6';
 h7 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 1 0],...
'Callback',@(hObject,eventdata)relay_export('pushbutton6_Callback',hObject,eventdata,guidata(hObject)),...
'Position',[29.8 4 17.8 3.84615384615385],...
'String','Turn OFF Relay 6',...
'Tag','pushbutton6',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'pushbutton7';
 h8 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 1 0],...
'Callback',@(hObject,eventdata)relay_export('pushbutton7_Callback',hObject,eventdata,guidata(hObject)),...
'Position',[54.4 4 18.2 3.84615384615385],...
'String','Turn OFF Relay 7',...
'Tag','pushbutton7',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'pushbutton8';
 h9 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 1 0],...
'Callback',@(hObject,eventdata)relay_export('pushbutton8_Callback',hObject,eventdata,guidata(hObject)),...
'Position',[79.8 4 18 3.84615384615385],...
'String','Turn OFF Relay 8',...
'Tag','pushbutton8',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 appdata = [];
appdata.lastValidTag = 'text1';
 h10 = uicontrol(...
'Parent',h1,...
'Units','characters',...
'BackgroundColor',[0 0 0],...
'ForegroundColor',[1 0 0],...
'Position',[59.4 1.69230769230769 40.6 1.07692307692308],...
'String','www.researchdesignlab.com',...
'Style','text',...
'Tag','text1',...
'CreateFcn', {@local_CreateFcn, blanks(0), appdata} );
 hsingleton = h1;
 % --- Set application data first then calling the CreateFcn.
function local_CreateFcn(hObject, eventdata, createfcn, appdata)
 if ~isempty(appdata)
   names = fieldnames(appdata);
   for i=1:length(names)
       name = char(names(i));
       setappdata(hObject, name, getfield(appdata,name));
   end
end
 f ~isempty(createfcn)
   if isa(createfcn,'function_handle')
       createfcn(hObject, eventdata);
   else
       eval(createfcn);
   end
end
 % --- Handles default GUIDE GUI creation and callback dispatch
function varargout = gui_mainfcn(gui_State, varargin)
 gui_StateFields =  {'gui_Name'

    'gui_Singleton'
  'gui_OpeningFcn'
    'gui_OutputFcn'
    'gui_LayoutFcn'
    'gui_Callback'};
gui_Mfile = '';
for i=1:length(gui_StateFields)
    if ~isfield(gui_State, gui_StateFields{i})
        error(message('MATLAB:guide:StateFieldNotFound', gui_StateFields{ i }, gui_Mfile));
    elseif isequal(gui_StateFields{i}, 'gui_Name')
        gui_Mfile = [gui_State.(gui_StateFields{i}), '.m'];
    end
end
 numargin = length(varargin);
 if numargin == 0
    % RELAY_EXPORT
    % create the GUI only if we are not in the process of loading it
    % already
    gui_Create = true;
elseif local_isInvokeActiveXCallback(gui_State, varargin{:})
    % RELAY_EXPORT(ACTIVEX,...)
    vin{1} = gui_State.gui_Name;
    vin{2} = [get(varargin{1}.Peer, 'Tag'), '_', varargin{end}];
    vin{3} = varargin{1};
    vin{4} = varargin{end-1};
    vin{5} = guidata(varargin{1}.Peer);
    feval(vin{:});
    return;
elseif local_isInvokeHGCallback(gui_State, varargin{:})
    % RELAY_EXPORT('CALLBACK',hObject,eventData,handles,...)
    gui_Create = false;
else
    % RELAY_EXPORT(...)
    % create the GUI and hand varargin to the openingfcn
    gui_Create = true;
end
 if ~gui_Create
    % In design time, we need to mark all components possibly created in
    % the coming callback evaluation as non-serializable. This way, they
    % will not be brought into GUIDE and not be saved in the figure file
    % when running/saving the GUI from GUIDE.
    designEval = false;
    if (numargin>1 && ishghandle(varargin{2}))
        fig = varargin{2};
        while ~isempty(fig) && ~ishghandle(fig,'figure')
            fig = get(fig,'parent');
        end
     designEval = isappdata(0,'CreatingGUIDEFigure') || isprop(fig,'__GUIDEFigure');
    end
          if designEval
        beforeChildren = findall(fig);
    end
     % evaluate the callback now
    varargin{1} = gui_State.gui_Callback;
    if nargout
        [varargout{1:nargout}] = feval(varargin{:});
    else      
        feval(varargin{:});
    end
    % Set serializable of objects created in the above callback to off in
    % design time. Need to check whether figure handle is still valid in
    % case the figure is deleted during the callback dispatching.
    if designEval && ishghandle(fig)
        set(setdiff(findall(fig),beforeChildren), 'Serializable','off');
    end
else
    if gui_State.gui_Singleton
        gui_SingletonOpt = 'reuse';
    else
        gui_SingletonOpt = 'new';
    end
 % Check user passing 'visible' P/V pair first so that its value can be
    % used by oepnfig to prevent flickering
    gui_Visible = 'auto';
    gui_VisibleInput = '';
    for index=1:2:length(varargin)
    if length(varargin) == index || ~ischar(varargin{index})
            break;
        end
   % Recognize 'visible' P/V pair
        len1 = min(length('visible'),length(varargin{index}));
        len2 = min(length('off'),length(varargin{index+1}));
        if ischar(varargin{index+1}) && strncmpi(varargin{index},'visible',len1) && len2 > 1
            if strncmpi(varargin{index+1},'off',len2)
                gui_Visible = 'invisible';
                gui_VisibleInput = 'off';
            elseif strncmpi(varargin{index+1},'on',len2)
                gui_Visible = 'visible';
                gui_VisibleInput = 'on';
            end
        end
    end
    % Open fig file with stored settings.  Note: This executes all component
    % specific CreateFunctions with an empty HANDLES structure.
  % Do feval on layout code in m-file if it exists
    gui_Exported = ~isempty(gui_State.gui_LayoutFcn);
    % this application data is used to indicate the running mode of a GUIDE
    % GUI to distinguish it from the design mode of the GUI in GUIDE. it is
    % only used by actxproxy at this time.  
    setappdata(0,genvarname(['OpenGuiWhenRunning_', gui_State.gui_Name]),1);
    if gui_Exported
        gui_hFigure = feval(gui_State.gui_LayoutFcn, gui_SingletonOpt);
   % make figure invisible here so that the visibility of figure is
     % consistent in OpeningFcn in the exported GUI case
      if isempty(gui_VisibleInput)
       gui_VisibleInput = get(gui_hFigure,'Visible');
        end
        set(gui_hFigure,'Visible','off')
    % openfig (called by local_openfig below) does this for guis without
        % the LayoutFcn. Be sure to do it here so guis show up on screen.
        movegui(gui_hFigure,'onscreen');
    else
        gui_hFigure = local_openfig(gui_State.gui_Name, gui_SingletonOpt, gui_Visible);
        % If the figure has InGUIInitialization it was not completely created
        % on the last pass.  Delete this handle and try again.
        if isappdata(gui_hFigure, 'InGUIInitialization')
            delete(gui_hFigure);
            gui_hFigure = local_openfig(gui_State.gui_Name, gui_SingletonOpt, gui_Visible);
        end
    end
    if isappdata(0, genvarname(['OpenGuiWhenRunning_', gui_State.gui_Name]))
        rmappdata(0,genvarname(['OpenGuiWhenRunning_', gui_State.gui_Name]));
    end
   % Set flag to indicate starting GUI initialization
    setappdata(gui_hFigure,'InGUIInitialization',1);
     % Fetch GUIDE Application options
    gui_Options = getappdata(gui_hFigure,'GUIDEOptions');
    % Singleton setting in the GUI M-file takes priority if different
    gui_Options.singleton = gui_State.gui_Singleton;
   if ~isappdata(gui_hFigure,'GUIOnScreen')
        % Adjust background color
        if gui_Options.syscolorfig
            set(gui_hFigure,'Color', get(0,'DefaultUicontrolBackgroundColor'));
        end
    % Generate HANDLES structure and store with GUIDATA. If there is
        % user set GUI data already, keep that also.
        data = guidata(gui_hFigure);
        handles = guihandles(gui_hFigure);
        if ~isempty(handles)
            if isempty(data)
                data = handles;
            else
                names = fieldnames(handles);
                for k=1:length(names)
                    data.(char(names(k)))=handles.(char(names(k)));
                end
            end
        end
        guidata(gui_hFigure, data);
    end
   % Apply input P/V pairs other than 'visible'
    for index=1:2:length(varargin)
        if length(varargin) == index || ~ischar(varargin{index})
            break;
        end
    len1 = min(length('visible'),length(varargin{index}));
        if ~strncmpi(varargin{index},'visible',len1)
            try set(gui_hFigure, varargin{index}, varargin{index+1}), catch break, end
        end
    end
 % If handle visibility is set to 'callback', turn it on until finished
    % with OpeningFcn
    gui_HandleVisibility = get(gui_hFigure,'HandleVisibility');
    if strcmp(gui_HandleVisibility, 'callback')
        set(gui_hFigure,'HandleVisibility', 'on');
    end
  feval(gui_State.gui_OpeningFcn, gui_hFigure, [], guidata(gui_hFigure), varargin{:});
   if isscalar(gui_hFigure) && ishghandle(gui_hFigure)
        % Handle the default callbacks of predefined toolbar tools in this
        % GUI, if any
        guidemfile('restoreToolbarToolPredefinedCallback',gui_hFigure);
        % Update handle visibility
        set(gui_hFigure,'HandleVisibility', gui_HandleVisibility);
     % Call openfig again to pick up the saved visibility or apply the
        % one passed in from the P/V pairs
        if ~gui_Exported
       gui_hFigure = local_openfig(gui_State.gui_Name, 'reuse',gui_Visible);
        elseif ~isempty(gui_VisibleInput)
            set(gui_hFigure,'Visible',gui_VisibleInput);
        end
        if strcmpi(get(gui_hFigure, 'Visible'), 'on')
            figure(gui_hFigure);
             if gui_Options.singleton
                setappdata(gui_hFigure,'GUIOnScreen', 1);
            end
        end
  % Done with GUI initialization
        if isappdata(gui_hFigure,'InGUIInitialization')
            rmappdata(gui_hFigure,'InGUIInitialization');
        end
   % If handle visibility is set to 'callback', turn it on until
        % finished with OutputFcn
        gui_HandleVisibility = get(gui_hFigure,'HandleVisibility');
        if strcmp(gui_HandleVisibility, 'callback')
            set(gui_hFigure,'HandleVisibility', 'on');
        end
        gui_Handles = guidata(gui_hFigure);
    else
        gui_Handles = [];
    end
  if nargout
        [varargout{1:nargout}] = feval(gui_State.gui_OutputFcn, gui_hFigure, [], gui_Handles);
    else
        feval(gui_State.gui_OutputFcn, gui_hFigure, [], gui_Handles);
    end
    if isscalar(gui_hFigure) && ishghandle(gui_hFigure)
        set(gui_hFigure,'HandleVisibility', gui_HandleVisibility);
    end
end
 function gui_hFigure = local_openfig(name, singleton, visible)
 % openfig with three arguments was new from R13. Try to call that first, if
% failed, try the old openfig.
if nargin('openfig') == 2
    % OPENFIG did not accept 3rd input argument until R13,
    % toggle default figure visible to prevent the figure
    % from showing up too soon.
    gui_OldDefaultVisible = get(0,'defaultFigureVisible');
    set(0,'defaultFigureVisible','off');
    gui_hFigure = openfig(name, singleton);
    set(0,'defaultFigureVisible',gui_OldDefaultVisible);
else
    gui_hFigure = openfig(name, singleton, visible); 
    %workaround for CreateFcn not called to create ActiveX
    if feature('HGUsingMATLABClasses')
        peers=findobj(findall(allchild(gui_hFigure)),'type','uicontrol','style','text');   
        for i=1:length(peers)
            if isappdata(peers(i),'Control')
                actxproxy(peers(i));
            end            
        end
    end
end
 function result = local_isInvokeActiveXCallback(gui_State, varargin)
 try
    result = ispc && iscom(varargin{1}) ...
             && isequal(varargin{1},gcbo);
catch
    result = false;
end
 function result = local_isInvokeHGCallback(gui_State, varargin)
 try
    fhandle = functions(gui_State.gui_Callback);
    result = ~isempty(findstr(gui_State.gui_Name,fhandle.file)) || ...
             (ischar(varargin{1}) ...
             && isequal(ishghandle(varargin{2}), 1) ...
             && (~isempty(strfind(varargin{1},[get(varargin{2}, 'Tag'), '_'])) || ...
                ~isempty(strfind(varargin{1}, '_CreateFcn'))) );
catch
    result = false;
end

senddata code
function  senddata(val1) 
%colorc='r'
disp('BEGIN')
ser=serial('COM3');
set(ser,'BaudRate',9600);
set(ser,'DataBits',8);
set(ser,'Parity','none');
set(ser,'StopBits',1);
set(ser,'FlowControl','none');
set(ser,'Terminator','CR/LF');
fopen(ser);
val1
 %if colorc=='Q'
  %  for i=1:1000
%  fprintf(ser,'%c',colorc);
 fwrite(ser,val1,'uint8');
  %  end
%end
fclose(ser);
delete(ser);
 %clear all;
disp('STOP');

Important steps to execute relay
·         We have to paste ftd2xx.dll and kernel32.dll files in C (create WINNT file inside that again create System32 file and paste those files here).
·         Before running the code in matlab make sure that u installed FT245RLutility software.
·         Make sure that you have given same serial port number in senddata which you have connected the relay


 Embedded part with programming
Programming the 8051 to receive character bytes serially
1. TMOD register is loaded with the value TMOD=0X20, indicating the use of timer 1 in mode2   (8-bit auto-reload) to set baud rate
2. TH1 is loaded to set baud rate
3. The SCON register is loaded with the value SCON=0X50, indicating serial mode 1, where an 8-bit data is framed with start and stop bits
4. TR1 is set to 1 to start timer 1
5. RI is cleared by RI=0; RI instruction
6. The RI flag bit is monitored with the use of instruction while (RI==0); to see if an entire character has been received yet.
7. When RI is raised, SBUF has the byte, its contents are moved into a safe place
8. To receive the next character, go to step 5

Simple Serial interfacing using 8051 Microcontroller and Keil– AT89S52

Fig.5 shows the circuit of simple 8051 Microcontroller interfaced with LED’s.
Here is a simple Embedded C program for interfacing 8 LED’s to a 8051 Microcontroller which could be turned ON or OFF  by sending few serial commands.
Program 5  enables a user to turn ON/OFF a series of LED’s by sending serial data. The program is designed in such a way that a serial command A1 will turn ON the first LED and A0 will turn of the same LED. Similarly B1 will turn ON the second LED and B0 will turn of the same LED. This will continue for the remaining 6 LED’s. i.e. H1 and H0 would turn ON and OFF last LED   (8th LED) respectively. You can enter the inputs in any serial window monitor software like Hyperterminal, Putty etc. Also you could design a GUI in software like Matlab, .NET etc. which could be used to control these LED’s.
Components/modules required
1) 8051 project board with RS232 interface (assembled/non assembled kit).
2) 5V DC source.
3) 8 LED’s.
4) Resistors (1KΩx8).
5) IC AT89S52.
6) 8051 IC burner.
7) Connectors and cables.

Fig. 5 Circuit Diagram for Serial and LED interfacing


Program 5:
#include<reg52.h>          //special function register declarations     
                                                                //for the intended 8051 derivative
void delay();                       // Function prototype declaration

sbit LED0=P2^0;                //Define Port Pin P2.0 as LED0
sbit LED1=P2^1;                //Define Port Pin P2.1 as LED1
sbit LED2=P2^2;                //Define Port Pin P2.2 as LED2
sbit LED3=P2^3;                //Define Port Pin P2.3 as LED3
sbit LED4=P2^4;                //Define Port Pin P2.4 as LED4
sbit LED5=P2^5;                //Define Port Pin P2.5 as LED5
sbit LED6=P2^6;                //Define Port Pin P2.6 as LED6
sbit LED7=P2^7;                //Define Port Pin P2.7 as LED7
Unsigned char byte1,byte2; // Variable declarations

/ MAIN CODE
void main()
{
//Serial Initialization
TMOD=0X20;            //use Timer 1, mode 2
SCON=0X50;             //indicating serial mode 1, where an 8-bit
                                    //data is framed with start and stop bits
TH1=0XFD;  //9600 baud rate
TR1=1;                        //Start timer
delay();                        //Wait for a delay for serial initialization to finish
// transmit 'S' to check whether the setup is ready
TI=0;                           //Forcibly change the Transmit Interrupt Flag of 8051 to 0
SBUF='S';                   //Move 'S' to serial buffer memory
While (TI==0);            //Wait until TI flag is set by hardware when an entire byte
                                    //has been transmitted 
TI=0;               // Forcibly clear TI flag
delay ();                       //A small delay for relaxation
P2=0x00;                     //Set Port 2 all bits to 0
while (1)                      // continuous loop
{
RI=0;               //Forcibly clear the Receive Interrupt Flag of 8051 to 0
while(RI==0);             //Wait until RI flag is set by hardware when an entire byte
                                    //has been received
byte1=SBUF;  //Move the received byte of data into variable 'byte1'
RI=0; //Forcibly clear RI flag
While(RI==0);            //Wait until RI flag is set by                                        //hardware when an entire byte
                                    //has been received
byte2=SBUF;  //Move the received byte of data                                //into variable 'byte2'
RI=0;               //Forcibly  clear RI flag
delay();
delay();
If(byte1=='A') //Check whether the 1st byte of
{                                  //data is 'A'
if(byte2=='1')  //Check whether the 2nd byte of
{                                  //data is '1'
LED0=1;                    //Turn ON LED0
delay();                        //Wait for a small delay
}
else if(byte2=='0') //Check whether the 2nd byte of
{                                  //data is '0'                  
LED0=0;                    //Turn OFF LED0
delay ();                       //Wait for a small delay                      
}
}
else if(byte1=='B')      //Check whether the 1st byte of
{                                  //data is 'B'
if(byte2=='1')  //Check whether the 2nd byte of
{                                  //data is '1'
else if(byte2=='0')       //Check whether the 2nd byte of
{                                  //data is '0'                  
LED1=0;                     //Turn OFF LED1
delay ();                       //Wait for a small delay                      
}
}
else if(byte1=='C')      //Check whether the 1st byte of
{                                  //data is 'C'
if(byte2=='1')  //Check whether the 2nd byte of
{                                  //data is '1'
LED2=1;                    //Turn ON LED2
delay();            //Wait for a small delay
}
else if(byte2=='0')       //Check whether the 2nd byte of
{                                  //data is '0'
LED2=0;                    //Turn OFF LED2
delay();            //Wait for a small delay                      
}
}
else if(byte1=='D')      //Check whether the 1st byte of
{                                  //data is 'D'
if(byte2=='1')  //Check whether the 2nd byte of
{                                  //data is '1'
delay();                        //Wait for a small delay
}
else if(byte2=='0')       //Check whether the 2nd byte of
{                                  //data is '0'                  
LED3=0;                    //Turn OFF LED3
delay();                        //Wait for a small delay                      
}
}
else if(byte1=='E')       //Check whether the 1st byte of
{                                  //data is 'E'
if(byte2=='1')  //Check whether the 2nd byte of
{                                  //data is '1'
LED4=1;                    //Turn ON LED4
delay();                        //Wait for a small delay
}
else if(byte2=='0')       //Check whether the 2nd byte of
{                                  //data is '0'                  
LED4=0;                    //Turn OFF LED4
delay();                        //Wait for a small delay                      
}
}
else if(byte1=='F')       //Check whether the 1st byte of
{                                  //data is 'F'
if(byte2=='1')  //Check whether the 2nd byte of
{                                  //data is '1'
LED5=1;                    //Turn ON LED5
delay();                        //Wait for a small delay
}
else if(byte2=='0')       //Check whether the 2nd byte of
{                                  //data is '0'                  
LED5=0;                    //Turn OFF LED5
delay();                        //Wait for a small delay                      
}
}
else if(byte1=='G')      //Check whether the 1st byte of
{                                  //data is 'G'
if(byte2=='1')  //Check whether the 2nd byte of
{                                  //data is '1'
LED6=1;                    //Turn ON LED6
delay();                        //Wait for a small delay
}
else if(byte2=='0')       //Check whether the 2nd byte of
{                                  //data is '0'                  
LED6=0;                    //Turn OFF LED6
delay();                        //Wait for a small delay                      
}
}
else if(byte1=='H')      //Check whether the 1st byte of
{                                  //data is 'H'
if(byte2=='1')  //Check whether the 2nd byte of {                            //data is '1'
LED7=1;                    //Turn ON LED7
delay();                        //Wait for a small delay
}
else if(byte2=='0')       //Check whether the 2nd byte of
{                                  //data is '0'                  
LED7=0;                    //Turn OFF LED7
delay();                        //Wait for a small delay                      
}
}
else
{
 P2=0x00;                    //Set Port 2 all bits to 0 if any
                                    //other variable has been received
delay();                        //Wait for a small delay          
}                                                                                             
}
void delay()                 // Delay Routine
{
 unsigned int x=60000;           // larger the value of x
                                                //the more is the delay.
 while (x--);                             // executes this statement
}                                              //until x decrements to 0

Smart Home



WORKING:
The matlab gui is programmed in such a way that whenever you click the push button it sends a serial interrupt to the microcontroller via RS232 protocol. The microcontroller is programmed in such a way that for a particular interrupt a particular task is done.

The microcontroller is used to monitor and control the devices.  An embedded c program is pre written into the microcontroller which is programmed according to our need.  The microcontroller is then interfaced with the relays and the necessary water level sensors.  Matlab will send a serial data to the microcontroller via the serial interface. The microcontroller replies if necessary and does the task assigned to it.
There are two parts in the matlabGui, one will behave like a regular user interface for hardware controlling the other will detect motion and fire through camera vision. Matlab will send an email to the concern user if any threat was detected along with a snapshot of the current view.

Program embedded code
char DATA1,DATA2;
 sbit relay1 at RB0_bit;
sbit relay2 at RB1_bit;
sbit relay3 at RB2_bit;
sbit relay4 at RB3_bit;
 sbit relay5 at RB4_bit;
//sbit W0 at RD4_bit;
sbit W1 at RD5_bit;
sbit W2 at RD6_bit;
sbit W3 at RD7_bit;
sbit check1 at RD2_bit;
void main() {
  TRISB  = 0x00;
  TRISD2_bit=0;
 //TRISD4_bit=1;
 TRISD5_bit=1;
 TRISD6_bit=1;
 TRISD7_bit=1;
UART1_Init(9600);               // Initialize UART module at 9600 bps
 Delay_ms(100);
  check1=0;
  PORTB=0x00;
while(1)
  {
    while(!UART1_Data_Ready());
    DATA1=UART1_Read();
   if (DATA1 == '1')
    {
      while(!UART1_Data_Ready());
      DATA2=UART1_Read();
      if (DATA2 == '1')
      {
      relay1=1;
      }
       else if (DATA2 == '0')
      {
      relay1=0;
      }
  }
  else if (DATA1 == '2')
    {
     while(!UART1_Data_Ready());
      DATA2=UART1_Read();
 if (DATA2 == '1')
      {
      relay2=1;
      }
}
    else if (DATA1 == '3')
    {
    While(!UART1_Data_Ready());
      DATA2=UART1_Read();
      if (DATA2 == '1')
      {
      relay3=1;
      }
 else if (DATA2 == '0')
      {
      relay3=0;
      }
 }
    else if (DATA1 == '4')
    {
while(!UART1_Data_Ready());
      DATA2=UART1_Read();
      if (DATA2 == '1')
      {
      relay4=1;
      }
else if (DATA2 == '0')
      {
      relay4=0;
      }
  }
    else if (DATA1 == '5')
    {
     while(!UART1_Data_Ready());
      DATA2=UART1_Read();
      if (DATA2 == '1')
      {
      relay5=1;
      }
  else if (DATA2 == '0')
      {
      relay5=0;
      }
   }
    else if (DATA1 == 'W')
    {
     while(!UART1_Data_Ready());
     DATA2=UART1_Read();
      if (DATA2 == 'T')
{
      if (W1 == 1 && W2 == 1 && W3 ==1)
      {
         UART1_Write_Text("L3");
         UART1_Write(10);
         UART1_Write(13);
      }
else if (W1 == 1 && W2 == 1 && W3 ==0)
      {
         UART1_Write_Text("L2");
         UART1_Write(10);
         UART1_Write(13);
      }
      else if (W1 == 1 && W2 == 0 && W3 ==0)
      {
         UART1_Write_Text("L1");
         UART1_Write(10);
         UART1_Write(13);
      }
      else if (W1 == 0 && W2 == 0 && W3 ==0)
      {
         UART1_Write_Text("L0");
         UART1_Write(10);
         UART1_Write(13);
      }
      }


    }
else
    {
      PORTB=0x00;
    }
  }}
Sample Matlab GUI Program
function varargout = SMART_HOME(varargin)
% SMART_HOME M-file for SMART_HOME.fig
%      SMART_HOME, by itself, creates a new SMART_HOME or raises the existing
%      singleton*.
%
%      H = SMART_HOME returns the handle to a new SMART_HOME or the handle to
%      the existing singleton*.
%
%      SMART_HOME('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in SMART_HOME.M with the given input arguments.
%
%      SMART_HOME('Property','Value',...) creates a new SMART_HOME or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before SMART_HOME_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to SMART_HOME_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help SMART_HOME

% Last Modified by GUIDE v2.5 08-Dec-2012 18:37:11

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @SMART_HOME_OpeningFcn, ...
                   'gui_OutputFcn',  @SMART_HOME_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before SMART_HOME is made visible.
function SMART_HOME_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to SMART_HOME (see VARARGIN)

% Choose default command line output for SMART_HOME
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes SMART_HOME wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = SMART_HOME_OutputFcn(hObject, eventdata, handles)
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

global flag1
global flag2
global flag3
global flag4
global flag5
global ser
 global FanOff
global FanOn
global BulbOff
global BulbOn
global unlock
global lock
global SpeakersOff
global SpeakersOn
 clc
%% initialise serial port
ser=serial('COM2');
set(ser,'BaudRate',9600);
set(ser,'DataBits',8);
set(ser,'Parity','none');
set(ser,'StopBits',1);
set(ser,'FlowControl','none');
set(ser, 'Timeout', 2)
set(ser,'Terminator','CR/LF');
%%
%% load all the images required to be displayed
pump =imread('water-pump1.jpg');
FanOff=imread('FanOff.jpg');
FanOn=imread('FanON.jpg');
axes(handles.axes1);
imshow(FanOff);
BulbOff=imread('BulbOff.jpg');
BulbOn=imread('BulbOn.jpg');
axes(handles.axes2);
imshow(BulbOff);
unlock=imread('unlock.jpg');
lock=imread('lock.jpg');
axes(handles.axes3);
imshow(unlock);
SpeakersOff=imread('SpeakersOff.jpg');
SpeakersOn=imread('SpeakersOn.jpg');
axes(handles.axes4);
imshow(SpeakersOff);
axes(handles.axes5);
imshow(pump);
set(handles.pushbutton1, 'BackgroundColor','green')
set(handles.pushbutton2, 'BackgroundColor','green')
set(handles.pushbutton3, 'BackgroundColor','green')
set(handles.pushbutton4, 'BackgroundColor','green')
set(handles.text3, 'visible','off')
set(handles.text4, 'visible','off')
set(handles.text5, 'visible','off')
set(handles.text6, 'visible','off')
flag1 = 0;
flag2 = 0;
flag3 = 0;
flag4 = 0;
flag5 = 0;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global flag1
global FanOff
global FanOn
global ser
fopen(ser);
if flag1 == 0
 set(handles.pushbutton1, 'BackgroundColor','red')
%     pval(1)=1
    fprintf(ser,'%s','11');
    flag1=1;
    axes(handles.axes1);
    imshow(FanOn);
else
    set(handles.pushbutton1, 'BackgroundColor','green')
%     pval(1)=0
    fprintf(ser,'%s','10');
    flag1=0;
    axes(handles.axes1);
    imshow(FanOff);
end
% putvalue(parport1,pval);
fclose(ser)

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 global flag2
global ser
global BulbOff
global BulbOn
fopen(ser)
if flag2 == 0
 set(handles.pushbutton2, 'BackgroundColor','red')
%     pval(2)=1
    fprintf(ser,'%s','21');
    flag2=1;
    axes(handles.axes2);
    imshow(BulbOn);   
else
    set(handles.pushbutton2, 'BackgroundColor','green')
%     pval(2)=0
    fprintf(ser,'%s','20');
    flag2=0;
    axes(handles.axes2);
    imshow(BulbOff);
end
fclose(ser)
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global flag3
global ser
global unlock
global lock
 fopen(ser)
 if flag3 == 0
 set(handles.pushbutton3, 'BackgroundColor','red')
%     pval(3)=1
    fprintf(ser,'%s','31');
    flag3=1;
    axes(handles.axes3);
    imshow(lock);
else
    set(handles.pushbutton3, 'BackgroundColor','green')
%     pval(3)=0
    fprintf(ser,'%s','30');
    flag3=0;
    axes(handles.axes3);
    imshow(unlock);
end
fclose(ser)
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 global flag4
global ser
global SpeakersOff
global SpeakersOn
fopen(ser)
if flag4 == 0
 set(handles.pushbutton4, 'BackgroundColor','red')
%     pval(4)=1
    fprintf(ser,'%s','41');
    flag4=1;
    axes(handles.axes4);
    imshow(SpeakersOn);
else
    set(handles.pushbutton4, 'BackgroundColor','green')
%     pval(4)=0
    fprintf(ser,'%s','40');
    flag4=0;
    axes(handles.axes4);
    imshow(SpeakersOff);
end
fclose(ser)
% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global ser
fclose(ser)
close all
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global ser
set(handles.text3, 'visible','off')
set(handles.text4, 'visible','off')
set(handles.text5, 'visible','off')
set(handles.text6, 'visible','off')
%% check sensor status and display the level of contents in the tank.
fopen(ser);
fprintf(ser,'%s','WT');
acc=fscanf(ser);
fclose(ser)

Val = strtrim(acc)
checkdata = isempty(Val)
 if checkdata ~= 1
    TF1 = strncmp('L1', Val, 2);
    TF2 = strncmp('L2', Val, 2);
    TF3 = strncmp('L3', Val, 2);
    TF4 = strncmp('L4', Val, 2);
    TF5 = strncmp('L0', Val, 2);
  if (TF1==1)
        set(handles.text6, 'visible','on')
          elseif (TF2==1)
        set(handles.text6, 'visible','on')
        set(handles.text5, 'visible','on')
        elseif (TF3==1)
        set(handles.text6, 'visible','on')
        set(handles.text5, 'visible','on')
        set(handles.text4, 'visible','on')
        elseif (TF4==1)
        set(handles.text6, 'visible','on')
        set(handles.text5, 'visible','on')
        set(handles.text4, 'visible','on')
        set(handles.text3, 'visible','on')
    elseif (TF5==1)
        set(handles.text6, 'visible','off')
        set(handles.text5, 'visible','off')
        set(handles.text4, 'visible','off')
        set(handles.text3, 'visible','off')
    end
    else
 end
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton7 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 global ser
global flag5
 fopen(ser);
if flag5 == 0
set(handles.pushbutton7, 'BackgroundColor','red')
%     pval(5)=1;
    fprintf(ser,'%s','51');
    flag5=1;
   
else
    set(handles.pushbutton7, 'BackgroundColor','green')
%     pval(5)=0
    fprintf(ser,'%s','50');
    flag5=0;
   
end
fclose(ser)


All the codes are available in link mention below 

Tuesday, 2 December 2014

Atmega328 UNO BOT


Overview:
Atmega 328 Uno BOT can quickly and easily build an Arduino-based  DIY robot. There are lots of complex, and time consuming ways to build a robot, But there are also many simple and easy ways to build, learn and celebrate. This is a great starting point for anyone who is interested, and wanting to get started with this hobby robotics with open source code .Robotics is an exciting and fun , so get ready to have some fun! 







Atmega328 UNO BOT Features:


  • 2.5Amps on-board DC-DC converter.
  • Stackable UNO header.
  • Inbuilt L298 motor driver.
  • Xbee footprint for WiFi and RF communication.
  • High torque geared DC motors.
  • Complete chassis with mounting hardware.
  •  Variety of sensors can be added

For More Products : CLICK HERE